Math 4A Week 10 - December 8, 2014

1. An elementary row operation on A does not change the determinant. True or false?
2. Matrix A has eigenvalue $\lambda=2$ and eigenvector $x=(3,1)$. Find $A^{10} x$.
3. Let λ be an eigenvalue of an invertible matrix A. What is the eigenvalue of A^{-1} ?
4. Are two diagonal matrices always similar?
5. Prove: If A and B are similar, they have the same characteristic polynomial.
6. A is an $n \times n$ matrix. True or False:
(i). If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
(ii). If A is diagonalizable, then A is invertible.
(iii). A is diagonalizable if A has n eigenvectors.
(iv). If A is diagonalizable, then A has n distinct eigenvalues.
7. Diagonalize the following matrix if possible:

$$
A=\left[\begin{array}{cccc}
5 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
1 & 4 & -3 & 0 \\
-1 & -2 & 0 & -3
\end{array}\right]
$$

Solution: See Section 5.3 Example 6.

